SIRT1 deacetylates SATB1 to facilitate MARHS2-MARε interaction and promote ε-globin expression
نویسندگان
چکیده
The higher order chromatin structure has recently been revealed as a critical new layer of gene transcriptional control. Changes in higher order chromatin structures were shown to correlate with the availability of transcriptional factors and/or MAR (matrix attachment region) binding proteins, which tether genomic DNA to the nuclear matrix. How posttranslational modification to these protein organizers may affect higher order chromatin structure still pending experimental investigation. The type III histone deacetylase silent mating type information regulator 2, S. cerevisiae, homolog 1 (SIRT1) participates in many physiological processes through targeting both histone and transcriptional factors. We show that MAR binding protein SATB1, which mediates chromatin looping in cytokine, MHC-I and β-globin gene loci, as a new type of SIRT1 substrate. SIRT1 expression increased accompanying erythroid differentiation and the strengthening of β-globin cluster higher order chromatin structure, while knockdown of SIRT1 in erythroid k562 cells weakened the long-range interaction between two SATB1 binding sites in the β-globin locus, MAR(HS2) and MAR(ε). We also show that SIRT1 activity significantly affects ε-globin gene expression in a SATB1-dependent manner and that knockdown of SIRT1 largely blocks ε-globin gene activation during erythroid differentiation. Our work proposes that SIRT1 orchestrates changes in higher order chromatin structure during erythropoiesis, and reveals the dynamic higher order chromatin structure regulation at posttranslational modification level.
منابع مشابه
SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression.
Special AT-rich binding protein 1 (SATB1) nuclear protein, expressed predominantly in T cells, regulates genes through targeting chromatin remodeling during T-cell maturation. Here we show SATB1 family protein induction during early human adult erythroid progenitor cell differentiation concomitant with epsilon-globin expression. Erythroid differentiation of human erythroleukemia K562 cells by h...
متن کاملSIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro
Sirtuin 1 (SIRT1) regulates adipocyte and osteoblast differentiation. However, the underlying mechanism should be investigated. This study revealed that SIRT1 acts as a crucial repressor of adipogenesis. RNA-interference-mediated SIRT1 knockdown or genetic ablation enhances adipogenic potential, whereas SIRT1 overexpression inhibits adipogenesis in mesenchymal stem cells (MSCs). SIRT1 also deac...
متن کاملExpression of Sirt1 and FoxP3 in classical Hodgkin lymphoma and tumor infiltrating lymphocytes: Implications for immune dysregulation, prognosis and potential therapeutic targeting.
BACKGROUND Hodgkin Reed-Sternberg (HRS) cells may promote differentiation of CD4+ naïve T cells toward both FoxP3+ T regulatory (Treg) cells and TIA-1+ cytotoxic T lymphocytes (CTL). Previous studies suggest that an overabundance of cytotoxic TIA-1+ cells in relation to FoxP3+ T reg cells portends unfavorable outcomes in classical Hodgkin lymphoma (cHL), raising the possibility that its pathoge...
متن کاملHistone deacetylase SIRT1 modulates and deacetylates DNA base excision repair enzyme thymine DNA glycosylase.
TDG (thymine DNA glycosylase) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation and transcription regulation. TDG is the predominant enzyme that removes thymine from T/G mispair, which arises due to deamination of 5-methyl-cytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/prot...
متن کاملSIRT1 deacetylates the cardiac transcription factor Nkx2.5 and inhibits its transcriptional activity
The homeodomain transcription factor Nkx2.5/Csx is critically essential for heart specification, morphogenesis, and homeostasis. Acetylation/deacetylation is important for the localization, stability and activation of transcription factors. It remains unknown how Nkx2.5 is deacetylated and how Nkx2.5 acetylation determines its activity. In this study, we provide evidence that the NAD+-dependent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012